Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature.

نویسندگان

  • T Zhao
  • A Scholl
  • F Zavaliche
  • K Lee
  • M Barry
  • A Doran
  • M P Cruz
  • Y H Chu
  • C Ederer
  • N A Spaldin
  • R R Das
  • D M Kim
  • S H Baek
  • C B Eom
  • R Ramesh
چکیده

Multiferroic materials, which offer the possibility of manipulating the magnetic state by an electric field or vice versa, are of great current interest. In this work, we demonstrate the first observation of electrical control of antiferromagnetic domain structure in a single-phase multiferroic material at room temperature. High-resolution images of both antiferromagnetic and ferroelectric domain structures of (001)-oriented multiferroic BiFeO3 films revealed a clear domain correlation, indicating a strong coupling between the two types of order. The ferroelectric structure was measured using piezo force microscopy, whereas X-ray photoemission electron microscopy as well as its temperature dependence was used to detect the antiferromagnetic configuration. Antiferromagnetic domain switching induced by ferroelectric polarization switching was observed, in agreement with theoretical predictions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Room temperature magnetic-field manipulation of electrical polarization in multiferroic thin film composite BiFeO3/La2/3Ca1/3MnO3

The electrical polarization in an epitaxially BiFeO3 film grown on La2/3Ca1/3MnO3/SrTiO3 is observed to be enhanced greatly by a magnetic field at room temperature. The simultaneous ferromagnetic order and ferroelectric polarization shown by the BiFeO3 film causes the strong coupling of the magnetic and ferroelectric domains in the BiFeO3 films. It was proposed that the activation energy for th...

متن کامل

DEPOSITION AND CHARACTERIZATION OF MULTIFERROIC BiFeO3 THIN FILMS

Title of Dissertation: DEPOSITION AND CHARACTERIZATION OF MULTIFERROIC BiFeO3 THIN FILMS Junling Wang, Doctor of Philosophy, 2005 Dissertation Directed By: Professor Manfred Wuttig, Department of Materials Science and Engineering Multiferroics, defined as materials with coexistence of at least two of the electric, elastic, and magnetic orders, have attracted enormous research activities recentl...

متن کامل

Interface Engineering of Domain Structures in BiFeO3 Thin Films.

A wealth of fascinating phenomena have been discovered at the BiFeO3 domain walls, examples such as domain wall conductivity, photovoltaic effects, and magnetoelectric coupling. Thus, the ability to precisely control the domain structures and accurately study their switching behaviors is critical to realize the next generation of novel devices based on domain wall functionalities. In this work,...

متن کامل

Domain Control in Multiferroic BiFeO3 through Substrate Vicinality

Control over ferroelectric polarization variants in BiFeO3 films through the use of various vicinal SrTiO3 substrates is demonstrated. The ferroelectric polarization variants in these films are characterized by piezoelectric force microscopy and the corresponding structural variants are carefully analyzed and confirmed by X-ray diffraction. Implementation of this approach has given us the abili...

متن کامل

Electric-field-induced spin flop in BiFeO3 single crystals at room temperature.

Bismuth ferrite, BiFeO3, is the only known room-temperature magnetic ferroelectric material. We demonstrate here, using neutron scattering measurements in high quality single crystals, that the antiferromagnetic and ferroelectric order parameters are intimately coupled. Initially in a single ferroelectric state, our crystals have a canted antiferromagnetic structure describing a unique cycloid....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature materials

دوره 5 10  شماره 

صفحات  -

تاریخ انتشار 2006